Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 394: 130247, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158092

RESUMO

Carbon transformations during anaerobic digestion are mediated by complex microbiomes, but their assembly is poorly understood, especially in full-scale digesters. Gene-centric metagenomics combining functional and taxonomic classification was performed for an on-farm digester during start-up. Cow manure and organic waste pre-treated in a hydrolysis tank were fed to the methane-producing digester and the volatile solids loading rate was slowly increased from 0 to 3.5 kg volatile solids m-3 d-1 over one year. The microbial community in the anaerobic digester exhibited a high ratio of archaea, which were dominated by hydrogenotrophic methanogens. Bacteria in the anaerobic digester had a high abundance of genes for ferredoxin cycling, H2 generation, and more metabolically complex fermentations than in the hydrolysis tank. In total, the results show that a functionally stable microbiome was achieved quickly during start-up and that the microbiome created in the low-pH hydrolysis tank did not persist in the downstream anaerobic digester.


Assuntos
Esterco , Microbiota , Animais , Feminino , Bovinos , Esterco/microbiologia , Anaerobiose , Reatores Biológicos/microbiologia , Bactérias/genética , Microbiota/genética , Metano
2.
ISME J ; 17(12): 2326-2339, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37880541

RESUMO

In many anoxic environments, syntrophic acetate oxidation (SAO) is a key pathway mediating the conversion of acetate into methane through obligate cross-feeding interactions between SAO bacteria (SAOB) and methanogenic archaea. The SAO pathway is particularly important in engineered environments such as anaerobic digestion (AD) systems operating at thermophilic temperatures and/or with high ammonia. Despite the widespread importance of SAOB to the stability of the AD process, little is known about their in situ physiologies due to typically low biomass yields and resistance to isolation. Here, we performed a long-term (300-day) continuous enrichment of a thermophilic (55 °C) SAO community from a municipal AD system using acetate as the sole carbon source. Over 80% of the enriched bioreactor metagenome belonged to a three-member consortium, including an acetate-oxidizing bacterium affiliated with DTU068 encoding for carbon dioxide, hydrogen, and formate production, along with two methanogenic archaea affiliated with Methanothermobacter_A. Stable isotope probing was coupled with metaproteogenomics to quantify carbon flux into each community member during acetate conversion and inform metabolic reconstruction and genome-scale modeling. This effort revealed that the two Methanothermobacter_A species differed in their preferred electron donors, with one possessing the ability to grow on formate and the other only consuming hydrogen. A thermodynamic analysis suggested that the presence of the formate-consuming methanogen broadened the environmental conditions where ATP production from SAO was favorable. Collectively, these results highlight how flexibility in electron partitioning during SAO likely governs community structure and fitness through thermodynamic-driven mutualism, shedding valuable insights into the metabolic underpinnings of this key functional group within methanogenic ecosystems.


Assuntos
Ecossistema , Euryarchaeota , Anaerobiose , Elétrons , Acetatos/metabolismo , Bactérias , Archaea , Euryarchaeota/metabolismo , Oxirredução , Hidrogênio/metabolismo , Formiatos/metabolismo , Metano/metabolismo
3.
Environ Sci Technol ; 57(35): 12969-12980, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37611169

RESUMO

Wastewater-based testing (WBT) for SARS-CoV-2 has rapidly expanded over the past three years due to its ability to provide a comprehensive measurement of disease prevalence independent of clinical testing. The development and simultaneous application of WBT measured biomarkers for research activities and for the pursuit of public health goals, both areas with well-established ethical frameworks. Currently, WBT practitioners do not employ a standardized ethical review process, introducing the potential for adverse outcomes for WBT professionals and community members. To address this deficiency, an interdisciplinary workshop developed a framework for a structured ethical review of WBT. The workshop employed a consensus approach to create this framework as a set of 11 questions derived from primarily public health guidance. This study retrospectively applied these questions to SARS-CoV-2 monitoring programs covering the emergent phase of the pandemic (3/2020-2/2022 (n = 53)). Of note, 43% of answers highlight a lack of reported information to assess. Therefore, a systematic framework would at a minimum structure the communication of ethical considerations for applications of WBT. Consistent application of an ethical review will also assist in developing a practice of updating approaches and techniques to reflect the concerns held by both those practicing and those being monitored by WBT supported programs.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Saúde Pública , Estudos Retrospectivos , SARS-CoV-2 , Águas Residuárias , Revisão Ética
4.
medRxiv ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398480

RESUMO

Wastewater-based testing (WBT) for SARS-CoV-2 has rapidly expanded over the past three years due to its ability to provide a comprehensive measurement of disease prevalence independent of clinical testing. The development and simultaneous application of the field blurred the boundary between measuring biomarkers for research activities and for pursuit of public health goals, both areas with well-established ethical frameworks. Currently, WBT practitioners do not employ a standardized ethical review process (or associated data management safeguards), introducing the potential for adverse outcomes for WBT professionals and community members. To address this deficiency, an interdisciplinary group developed a framework for a structured ethical review of WBT. The workshop employed a consensus approach to create this framework as a set of 11-questions derived from primarily public health guidance because of the common exemption of wastewater samples to human subject research considerations. This study retrospectively applied the set of questions to peer- reviewed published reports on SARS-CoV-2 monitoring campaigns covering the emergent phase of the pandemic from March 2020 to February 2022 (n=53). Overall, 43% of the responses to the questions were unable to be assessed because of lack of reported information. It is therefore hypothesized that a systematic framework would at a minimum improve the communication of key ethical considerations for the application of WBT. Consistent application of a standardized ethical review will also assist in developing an engaged practice of critically applying and updating approaches and techniques to reflect the concerns held by both those practicing and being monitored by WBT supported campaigns. Synopsis: Development of a structured ethical review facilitates retrospective analysis of published studies and drafted scenarios in the context of wastewater-based testing.

5.
mSystems ; 8(4): e0128022, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37377419

RESUMO

Stable isotope probing (SIP) facilitates culture-independent identification of active microbial populations within complex ecosystems through isotopic enrichment of nucleic acids. Many DNA-SIP studies rely on 16S rRNA gene sequences to identify active taxa, but connecting these sequences to specific bacterial genomes is often challenging. Here, we describe a standardized laboratory and analysis framework to quantify isotopic enrichment on a per-genome basis using shotgun metagenomics instead of 16S rRNA gene sequencing. To develop this framework, we explored various sample processing and analysis approaches using a designed microbiome where the identity of labeled genomes and their level of isotopic enrichment were experimentally controlled. With this ground truth dataset, we empirically assessed the accuracy of different analytical models for identifying active taxa and examined how sequencing depth impacts the detection of isotopically labeled genomes. We also demonstrate that using synthetic DNA internal standards to measure absolute genome abundances in SIP density fractions improves estimates of isotopic enrichment. In addition, our study illustrates the utility of internal standards to reveal anomalies in sample handling that could negatively impact SIP metagenomic analyses if left undetected. Finally, we present SIPmg, an R package to facilitate the estimation of absolute abundances and perform statistical analyses for identifying labeled genomes within SIP metagenomic data. This experimentally validated analysis framework strengthens the foundation of DNA-SIP metagenomics as a tool for accurately measuring the in situ activity of environmental microbial populations and assessing their genomic potential. IMPORTANCE Answering the questions, "who is eating what?" and "who is active?" within complex microbial communities is paramount for our ability to model, predict, and modulate microbiomes for improved human and planetary health. These questions can be pursued using stable isotope probing to track the incorporation of labeled compounds into cellular DNA during microbial growth. However, with traditional stable isotope methods, it is challenging to establish links between an active microorganism's taxonomic identity and genome composition while providing quantitative estimates of the microorganism's isotope incorporation rate. Here, we report an experimental and analytical workflow that lays the foundation for improved detection of metabolically active microorganisms and better quantitative estimates of genome-resolved isotope incorporation, which can be used to further refine ecosystem-scale models for carbon and nutrient fluxes within microbiomes.


Assuntos
Metagenômica , Microbiota , Humanos , Metagenômica/métodos , RNA Ribossômico 16S/genética , DNA/genética , Isótopos , Microbiota/genética
6.
Microbiol Resour Announc ; 12(2): e0075922, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36625650

RESUMO

We report the genome of Phormidium yuhuli AB48, which includes a circular chromosome and a circular plasmid (4,747,469 bp and 51,599 bp, respectively). This is currently the only closed reference genome of an isolate of the Phormidium genus, based on the Genome Taxonomy Database (GTDB), providing a potential model system for sustainable biotechnology innovation.

7.
Environ Sci Technol ; 56(16): 11670-11682, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35929783

RESUMO

Conventional bioprocess models for wastewater treatment are based on aggregated bulk biomass concentrations and do not incorporate microbial physiological diversity. Such a broad aggregation of microbial functional groups can fail to predict ecosystem dynamics when high levels of physiological diversity exist within trophic guilds. For instance, functional diversity among nitrite-oxidizing bacteria (NOB) can obfuscate engineering strategies for their out-selection in activated sludge (AS), which is desirable to promote energy-efficient nitrogen removal. Here, we hypothesized that different NOB populations within AS can have different physiological traits that drive process performance, which we tested by estimating biokinetic growth parameters using a combination of highly replicated respirometry, genome-resolved metagenomics, and process modeling. A lab-scale AS reactor subjected to a selective pressure for over 90 days experienced resilience of NOB activity. We recovered three coexisting Nitrospira population genomes belonging to two sublineages, which exhibited distinct growth strategies and underwent a compositional shift following the selective pressure. A trait-based process model calibrated at the NOB genus level better predicted nitrite accumulation than a conventional process model calibrated at the NOB guild level. This work demonstrates that trait-based modeling can be leveraged to improve our prediction, control, and design of functionally diverse microbiomes driving key environmental biotechnologies.


Assuntos
Microbiota , Esgotos , Bactérias/genética , Reatores Biológicos/microbiologia , Metagenômica , Nitrificação , Nitritos , Nitrogênio , Oxirredução , Esgotos/microbiologia
8.
Water Res ; 220: 118621, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35665675

RESUMO

During the coronavirus disease 2019 (COVID-19) pandemic, wastewater surveillance has become an important tool for monitoring the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within communities. In particular, reverse transcription-quantitative PCR (RT-qPCR) has been used to detect and quantify SARS-CoV-2 RNA in wastewater, while monitoring viral genome mutations requires separate approaches such as deep sequencing. A high throughput sequencing platform (ATOPlex) that uses a multiplex tiled PCR-based enrichment technique has shown promise in detecting variants of concern (VOC) while also providing virus quantitation data. However, detection sensitivities of both RT-qPCR and sequencing can be impacted through losses occurring during sample handling, virus concentration, nucleic acid extraction, and RT-qPCR. Therefore, process limit of detection (PLOD) assessments are required to estimate the gene copies of target molecule to attain specific probability of detection. In this study, we compare the PLOD of four RT-qPCR assays (US CDC N1 and N2, China CDC N and ORF1ab) for detection of SARS-CoV-2 to that of ATOPlex sequencing by seeding known concentrations of gamma-irradiated SARS-CoV-2 into wastewater. Results suggest that among the RT-qPCR assays, US CDC N1 was the most sensitive, especially at lower SARS-CoV-2 seed levels. However, when results from all RT-qPCR assays were combined, it resulted in greater detection rates than individual assays, suggesting that application of multiple assays is better suited for the trace detection of SARS-CoV-2 from wastewater samples. Furthermore, while ATOPlex offers a promising approach to SARS-CoV-2 wastewater surveillance, this approach appears to be less sensitive compared to RT-qPCR under the experimental conditions of this study, and may require further refinements. Nonetheless, the combination of RT-qPCR and ATOPlex may be a powerful tool to simultaneously detect/quantify SARS-CoV-2 RNA and monitor emerging VOC in wastewater samples.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA Viral/genética , Transcrição Reversa , SARS-CoV-2/genética , Águas Residuárias/análise , Vigilância Epidemiológica Baseada em Águas Residuárias
9.
Appl Environ Microbiol ; 88(10): e0244921, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35477253

RESUMO

Recently, methanogenic archaea belonging to the genus Methanothrix were reported to have a fundamental role in maintaining stable ecosystem functioning in anaerobic bioreactors under different configurations/conditions. In this study, we reconstructed three Methanothrix metagenome-assembled genomes (MAGs) from granular sludge collected from saline upflow anaerobic sludge blanket (UASB) reactors, where Methanothrix harundinacea was previously implicated with the formation of compact and stable granules under elevated salinity levels (up to 20 g/L Na+). Genome annotation and pathway analysis of the Methanothrix MAGs revealed a genetic repertoire supporting their growth under high salinity. Specifically, the most dominant Methanothrix (MAG_279), classified as a subspecies of Methanothrix_A harundinacea_D, had the potential to augment its salinity resistance through the production of different glycoconjugates via the N-glycosylation process, and via the production of compatible solutes as Nε-acetyl-ß-lysine and ectoine. The stabilization and reinforcement of the cell membrane via the production of isoprenoids was identified as an additional stress-related pathway in this microorganism. The improved understanding of the salinity stress-related mechanisms of M. harundinacea highlights its ecological niche in extreme conditions, opening new perspectives for high-efficiency methanisation of organic waste at high salinities, as well as the possible persistence of this methanogen in highly-saline natural anaerobic environments. IMPORTANCE Using genome-centric metagenomics, we discovered a new Methanothrix harundinacea subspecies that appears to be a halotolerant acetoclastic methanogen with the flexibility for adaptation in the anaerobic digestion process both at low (5 g/L Na+) and high salinity conditions (20 g/L Na+). Annotation of the recovered M. harundinacea genome revealed salinity stress-related functions, including the modification of EPS glycoconjugates and the production of compatible solutes. This is the first study reporting these genomic features within a Methanothrix sp., a milestone further supporting previous studies that identified M. harundinacea as a key-driver in anaerobic granulation under high salinity stress.


Assuntos
Euryarchaeota , Esgotos , Anaerobiose , Reatores Biológicos , Ecossistema , Euryarchaeota/metabolismo , Metagenoma , Metano/metabolismo , Methanosarcinaceae/metabolismo , Salinidade , Estresse Salino , Eliminação de Resíduos Líquidos
10.
Environ Sci Technol ; 56(8): 4749-4775, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35357187

RESUMO

Several problems associated with the presence of lipids in wastewater treatment plants are usually overcome by removing them ahead of the biological treatment. However, because of their high energy content, waste lipids are interesting yet challenging pollutants in anaerobic wastewater treatment and codigestion processes. The maximal amount of waste lipids that can be sustainably accommodated, and effectively converted to methane in anaerobic reactors, is limited by several problems including adsorption, sludge flotation, washout, and inhibition. These difficulties can be circumvented by appropriate feeding, mixing, and solids separation strategies, provided by suitable reactor technology and operation. In recent years, membrane bioreactors and flotation-based bioreactors have been developed to treat lipid-rich wastewater. In parallel, the increasing knowledge on the diversity of complex microbial communities in anaerobic sludge, and on interspecies microbial interactions, contributed to extend the knowledge and to understand more precisely the limits and constraints influencing the anaerobic biodegradation of lipids in anaerobic reactors. This critical review discusses the most important principles underpinning the degradation process and recent key discoveries and outlines the current knowledge coupling fundamental and applied aspects. A critical assessment of knowledge gaps in the field is also presented by integrating sectorial perspectives of academic researchers and of prominent developers of anaerobic technology.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Lipídeos , Metano/metabolismo , Águas Residuárias
11.
Sci Total Environ ; 820: 153171, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35051459

RESUMO

On the 26th of November 2021, the World Health Organization (WHO) designated the newly detected B.1.1.529 lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) the Omicron Variant of Concern (VOC). The genome of the Omicron VOC contains more than 50 mutations, many of which have been associated with increased transmissibility, differing disease severity, and potential to evade immune responses developed for previous VOCs such as Alpha and Delta. In the days since the designation of B.1.1.529 as a VOC, infections with the lineage have been reported in countries around the globe and many countries have implemented travel restrictions and increased border controls in response. We putatively detected the Omicron variant in an aircraft wastewater sample from a flight arriving to Darwin, Australia from Johannesburg, South Africa on the 25th of November 2021 via positive results on the CDC N1, CDC N2, and del(69-70) RT-qPCR assays per guidance from the WHO. The Australian Northern Territory Health Department detected one passenger onboard the flight who was infected with SARS-CoV-2, which was determined to be the Omicron VOC by sequencing of a nasopharyngeal swab sample. Subsequent sequencing of the aircraft wastewater sample using the ARTIC V3 protocol with Nanopore and ATOPlex confirmed the presence of the Omicron variant with a consensus genome that clustered with the B.1.1.529 BA.1 sub-lineage. Our detection and confirmation of a single onboard Omicron infection via aircraft wastewater further bolsters the important role that aircraft wastewater can play as an independent and unintrusive surveillance point for infectious diseases, particularly coronavirus disease 2019.


Assuntos
COVID-19 , SARS-CoV-2 , Aeronaves , Austrália , COVID-19/epidemiologia , Humanos , SARS-CoV-2/genética , África do Sul/epidemiologia , Águas Residuárias
12.
mSystems ; 6(5): e0106821, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34665013

RESUMO

Wastewater-based genomic surveillance of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus shows promise to complement genomic epidemiology efforts. Multiplex tiling PCR is a desirable approach for targeted genome sequencing of SARS-CoV-2 in wastewater due to its low cost and rapid turnaround time. However, it is not clear how different multiplex tiling PCR primer schemes or wastewater sample matrices impact the resulting SARS-CoV-2 genome coverage. The objective of this work was to assess the performance of three different multiplex primer schemes, consisting of 150-bp, 400-bp, and 1,200-bp amplicons, as well as two wastewater sample matrices, influent wastewater and primary sludge, for targeted genome sequencing of SARS-CoV-2. Wastewater samples were collected weekly from five municipal wastewater treatment plants (WWTPs) in the Metro Vancouver region of British Columbia, Canada during a period of increased coronavirus disease 19 (COVID-19) case counts from February to April 2021. RNA extracted from clarified influent wastewater provided significantly higher genome coverage (breadth and median depth) than primary sludge samples across all primer schemes. Shorter amplicons appeared to be more resilient to sample RNA degradation but were hindered by greater primer pool complexity in the 150-bp scheme. The identified optimal primer scheme (400 bp) and sample matrix (influent) were capable of detecting the emergence of mutations associated with genomic variants of concern, for which the daily wastewater load significantly correlated with clinical case counts. Taken together, these results provide guidance on best practices for implementing wastewater-based genomic surveillance and demonstrate its ability to inform epidemiology efforts by detecting genomic variants of concern circulating within a geographic region. IMPORTANCE Monitoring the genomic characteristics of the SARS-CoV-2 virus circulating in a population can shed important insights into epidemiological aspects of the COVID-19 outbreak. Sequencing every clinical patient sample in a highly populous area is a difficult feat, and thus sequencing SARS-CoV-2 RNA in municipal wastewater offers great promise to augment genomic surveillance by characterizing a pooled population sample matrix, particularly during an escalating outbreak. Here, we assess different approaches and sample matrices for rapid targeted genome sequencing of SARS-CoV-2 in municipal wastewater. We demonstrate that the optimal approach is capable of detecting the emergence of SARS-CoV-2 genomic variants of concern, with strong correlations to clinical case data in the province of British Columbia. These results provide guidance on best practices on, as well as further support for, the application of wastewater genomic surveillance as a tool to augment current genomic epidemiology efforts.

13.
Water Res ; 205: 117608, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34555741

RESUMO

Advances in high-throughput sequencing technologies and bioinformatics approaches over almost the last three decades have substantially increased our ability to explore microorganisms and their functions - including those that have yet to be cultivated in pure isolation. Genome-resolved metagenomic approaches have enabled linking powerful functional predictions to specific taxonomical groups with increasing fidelity. Additionally, related developments in both whole community gene expression surveys and metabolite profiling have permitted for direct surveys of community-scale functions in specific environmental settings. These advances have allowed for a shift in microbiome science away from descriptive studies and towards mechanistic and predictive frameworks for designing and harnessing microbial communities for desired beneficial outcomes. Water engineers, microbiologists, and microbial ecologists studying activated sludge, anaerobic digestion, and drinking water distribution systems have applied various (meta)omics techniques for connecting microbial community dynamics and physiologies to overall process parameters and system performance. However, the rapid pace at which new omics-based approaches are developed can appear daunting to those looking to apply these state-of-the-art practices for the first time. Here, we review how modern genome-resolved metagenomic approaches have been applied to a variety of water engineering applications from lab-scale bioreactors to full-scale systems. We describe integrated omics analysis across engineered water systems and the foundations for pairing these insights with modeling approaches. Lastly, we summarize emerging omics-based technologies that we believe will be powerful tools for water engineering applications. Overall, we provide a framework for microbial ecologists specializing in water engineering to apply cutting-edge omics approaches to their research questions to achieve novel functional insights. Successful adoption of predictive frameworks in engineered water systems could enable more economically and environmentally sustainable bioprocesses as demand for water and energy resources increases.


Assuntos
Microbiota , Água , Reatores Biológicos , Metagenômica , Esgotos
14.
Water Res ; 203: 117514, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34407486

RESUMO

Sludge granulation in continuous-flow systems is an emerging technology to intensify existing activated sludge infrastructure for nutrient removal. In these systems, the nutrient removal contributions and partitioning of microbial functions between granules and flocs can offer insights into process implementations. To this end, a reactor system that simulates the continuous-flow environment using an equal amount of initial granule and floc biomass was investigated. The two operational strategies for maintaining granule growth in the continuous-flow system were (a) the higher solids retention time (SRT) for the granules versus flocs, as well as (b) selective feeding of carbon to the granules. The SRT of the large granule fractions (>425 µm, LG) and floc/small granule fractions (<425 µm, FSG) were controlled at 20 and 2.7-6.0 days, respectively. Long term operation of the hybrid granule/floc system achieved high PO43- and NH4+ removal efficiencies. Higher polyphosphate-accumulating organisms (PAO) activity was observed in the FSG than LG, while ammonia-oxidizing bacteria (AOB) activities were similar in the two biomass fractions. Nitrite shunt was observed in the FSG, possibly due to out-competition by the high NOB activity in LG. More importantly, washing out the FSG caused a reduction in LG's AOB and PAO activity, indicating a possible dependency of LG on FSG for maintaining its nutrient removal capacity. Our findings highlighted the partitioning and potential competition/cooperation of key microbial functional groups between LG and FSG, facilitating nutrient removal in a hybrid granular activated sludge system, as well as implications for practical application of the treatment platform.


Assuntos
Betaproteobacteria , Esgotos , Reatores Biológicos , Nitritos , Nitrogênio , Nutrientes
15.
mSystems ; 6(4): e0071221, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34282936

RESUMO

Managing and engineering activated sludge wastewater treatment microbiomes for low-energy nitrogen removal requires process control strategies to stop the oxidation of ammonium at nitrite. Our ability to out-select nitrite-oxidizing bacteria (NOB) from activated sludge is challenged by their metabolic and physiological diversity, warranting measurements of their in situ physiology and activity under selective growth pressures. Here, we examined the stability of nitrite oxidation in activated sludge during a press disturbance induced by treating a portion of return activated sludge with a sidestream flow containing free ammonia (FA) at 200 mg NH3-N/liter. The nitrite accumulation ratio peaked at 42% by day 40 in the experimental bioreactor with the press disturbance, while it did not increase in the control bioreactor. A subsequent decrease in nitrite accumulation within the experimental bioreactor coincided with shifts in dominant Nitrospira 16S rRNA amplicon sequence variants (ASVs). We applied bioorthogonal noncanonical amino acid tagging (BONCAT) coupled with fluorescence-activated cell sorting (FACS) to investigate changes in the translational activity of NOB populations throughout batch exposure to FA. BONCAT-FACS confirmed that the single Nitrospira ASV washed out of the experimental bioreactor had reduced translational activity following exposure to FA, whereas the two Nitrospira ASVs that emerged after process acclimation were not impacted by FA. Thus, the coexistence of functionally degenerate and physiologically resistant Nitrospira populations provided resilience to the nitrite-oxidizing function during the press disturbance. These results highlight how BONCAT-FACS can resolve ecological niche differentiation within activated sludge and inform strategies to engineer and control microbiome function. IMPORTANCE Nitrogen removal from activated sludge wastewater treatment systems is an energy-intensive process due to the large aeration requirement for nitrification. This energy footprint could be minimized with engineering control strategies that wash out nitrite-oxidizing bacteria (NOB) to limit oxygen demands. However, NOB populations can have a high degree of physiological diversity, and it is currently difficult to decipher the behavior of individual taxa during applied selective pressures. Here, we utilized a new substrate analog probing approach to measure the activity of NOB at the cellular translational level in the face of a press disturbance applied to the activated sludge process. Substrate analog probing corroborated the time series reactor sampling, showing that coexisting and functionally degenerate Nitrospira populations provided resilience to the nitrite oxidation process. Taken together, these results highlight how substrate analog approaches can illuminate in situ ecophysiologies within shared niches, and can inform strategies to improve microbiome engineering and management.

16.
Nat Methods ; 18(2): 165-169, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33432244

RESUMO

High-throughput amplicon sequencing of large genomic regions remains challenging for short-read technologies. Here, we report a high-throughput amplicon sequencing approach combining unique molecular identifiers (UMIs) with Oxford Nanopore Technologies (ONT) or Pacific Biosciences circular consensus sequencing, yielding high-accuracy single-molecule consensus sequences of large genomic regions. We applied our approach to sequence ribosomal RNA operon amplicons (~4,500 bp) and genomic sequences (>10,000 bp) of reference microbial communities in which we observed a chimera rate <0.02%. To reach a mean UMI consensus error rate <0.01%, a UMI read coverage of 15× (ONT R10.3), 25× (ONT R9.4.1) and 3× (Pacific Biosciences circular consensus sequencing) is needed, which provides a mean error rate of 0.0042%, 0.0041% and 0.0007%, respectively.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microbiota , Nanoporos , Fluxo de Trabalho
17.
Biotechnol Biofuels ; 13: 25, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32123542

RESUMO

BACKGROUND: Microorganisms in biogas reactors are essential for degradation of organic matter and methane production. However, a comprehensive genome-centric comparison, including relevant metadata for each sample, is still needed to identify the globally distributed biogas community members and serve as a reliable repository. RESULTS: Here, 134 publicly available metagenomes derived from different biogas reactors were used to recover 1635 metagenome-assembled genomes (MAGs) representing different biogas bacterial and archaeal species. All genomes were estimated to be > 50% complete and nearly half ≥ 90% complete with ≤ 5% contamination. In most samples, specialized microbial communities were established, while only a few taxa were widespread among the different reactor systems. Metabolic reconstruction of the MAGs enabled the prediction of functional traits related to biomass degradation and methane production from waste biomass. An extensive evaluation of the replication index provided an estimation of the growth dynamics for microbes involved in different steps of the food chain. CONCLUSIONS: The outcome of this study highlights a high flexibility of the biogas microbiome, allowing it to modify its composition and to adapt to the environmental conditions, including temperatures and a wide range of substrates. Our findings enhance our mechanistic understanding of the AD microbiome and substantially extend the existing repository of genomes. The established database represents a relevant resource for future studies related to this engineered ecosystem.

18.
Environ Sci Technol ; 53(21): 12935-12944, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31593444

RESUMO

In water resource recovery facilities, sidestream biological nitrogen removal via anaerobic ammonium oxidation (anammox) is more energy and cost efficient than conventional nitrification-denitrification. However, under mainstream conditions, nitrite oxidizing bacteria (NOB) out-select anammox bacteria for nitrite produced by ammonium oxidizing bacteria (AOB). Therefore, nitrite production is the bottleneck in mainstream anammox nitrogen removal. Nitrate-dependent denitrifying anaerobic methane oxidizing archaea (n-damo) oxidize methane and reduce nitrate to nitrite. The nitrite supply challenge in mainstream anammox implementation could be solved with a microbial community of AOB, NOB, n-damo, and anammox with methane from anaerobic sludge digestion or a mainstream anaerobic membrane bioreactor (AnMBR). The cost and environmental impact of traditional nitrification/dentrification relative to AOB/anammox and AOB/anammox/n-damo systems, with and without an AnMBR, were compared with a stoichiometric model. AnMBR implementation reduced costs and emission rates at moderate to high nutrient loading by lowering aeration and sludge handling demands while increasing methane available for cogeneration. AnMBR/AOB/anammox systems reduced cost and GHG emission by up to $0.303/d/m3 and 1.72 kg equiv. CO2/d/m3, respectively, while AnMBR/AOB/anammox/n-damo systems saw a similar reduction of at least $0.300/d/m3 and 1.65 kg equiv. CO2/d/m3 in addition to alleviating the necessity to stop nitrification at nitrate, allowing easier aeration control.


Assuntos
Compostos de Amônio , Águas Residuárias , Anaerobiose , Reatores Biológicos , Desnitrificação , Metano , Nitrogênio , Oxirredução
19.
mSystems ; 4(4)2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387934

RESUMO

Linking the genomic content of uncultivated microbes to their metabolic functions remains a critical challenge in microbial ecology. Resolving this challenge has implications for improving our management of key microbial interactions in biotechnologies such as anaerobic digestion, which relies on slow-growing syntrophic and methanogenic communities to produce renewable methane from organic waste. In this study, we combined DNA stable-isotope probing (SIP) with genome-centric metagenomics to recover the genomes of populations enriched in 13C after growing on [13C]butyrate. Differential abundance analysis of recovered genomic bins across the SIP metagenomes identified two metagenome-assembled genomes (MAGs) that were significantly enriched in heavy [13C]DNA. Phylogenomic analysis assigned one MAG to the genus Syntrophomonas and the other MAG to the genus Methanothrix. Metabolic reconstruction of the annotated genomes showed that the Syntrophomonas genome encoded all the enzymes for beta-oxidizing butyrate, as well as several mechanisms for interspecies electron transfer via electron transfer flavoproteins, hydrogenases, and formate dehydrogenases. The Syntrophomonas genome shared low average nucleotide identity (<95%) with any cultured representative species, indicating that it is a novel species that plays a significant role in syntrophic butyrate degradation within anaerobic digesters. The Methanothrix genome contained the complete pathway for acetoclastic methanogenesis, indicating that it was enriched in 13C from syntrophic acetate transfer. This study demonstrates the potential of stable-isotope-informed genome-resolved metagenomics to identify in situ interspecies metabolic cooperation within syntrophic consortia important to anaerobic waste treatment as well as global carbon cycling.IMPORTANCE Predicting the metabolic potential and ecophysiology of mixed microbial communities remains a major challenge, especially for slow-growing anaerobes that are difficult to isolate. Unraveling the in situ metabolic activities of uncultured species may enable a more descriptive framework to model substrate transformations by microbiomes, which has broad implications for advancing the fields of biotechnology, global biogeochemistry, and human health. Here, we investigated the in situ function of mixed microbiomes by combining stable-isotope probing with metagenomics to identify the genomes of active syntrophic populations converting butyrate, a C4 fatty acid, into methane within anaerobic digesters. This approach thus moves beyond the mere presence of metabolic genes to resolve "who is doing what" by obtaining confirmatory assimilation of the labeled substrate into the DNA signature. Our findings provide a framework to further link the genomic identities of uncultured microbes with their ecological function within microbiomes driving many important biotechnological and global processes.

20.
Microb Biotechnol ; 11(4): 694-709, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29633555

RESUMO

This study examined whether the abundance and expression of microbial 16S rRNA genes were associated with elemental concentrations and substrate conversion biokinetics in 20 full-scale anaerobic digesters, including seven municipal sewage sludge (SS) digesters and 13 industrial codigesters. SS digester contents had higher methane production rates from acetate, propionate and phenyl acetate compared to industrial codigesters. SS digesters and industrial codigesters were distinctly clustered based on their elemental concentrations, with higher concentrations of NH3 -N, Cl, K and Na observed in codigesters. Amplicon sequencing of 16S rRNA genes and reverse-transcribed 16S rRNA revealed divergent grouping of microbial communities between mesophilic SS digesters, mesophilic codigesters and thermophilic digesters. Higher intradigester distances between Archaea 16S rRNA and rRNA gene profiles were observed in mesophilic codigesters, which also had the lowest acetate utilization biokinetics. Constrained ordination showed that microbial rRNA and rRNA gene profiles were significantly associated with maximum methane production rates from acetate, propionate, oleate and phenyl acetate, as well as concentrations of NH3 -N, Fe, S, Mo and Ni. A co-occurrence network of rRNA gene expression confirmed the three main clusters of anaerobic digester communities based on active populations. Syntrophic and methanogenic taxa were highly represented within the subnetworks, indicating that obligate energy-sharing partnerships play critical roles in stabilizing the digester microbiome. Overall, these results provide new evidence showing that different feed substrates associate with different micronutrient compositions in anaerobic digesters, which in turn may influence microbial abundance, activity and function.


Assuntos
Archaea/genética , Archaea/metabolismo , Reatores Biológicos/microbiologia , DNA Arqueal/genética , Acetatos/metabolismo , Anaerobiose , Archaea/classificação , Archaea/isolamento & purificação , Microbiota , Fenóis/metabolismo , Filogenia , Propionatos/metabolismo , RNA Ribossômico 16S/genética , Esgotos/química , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...